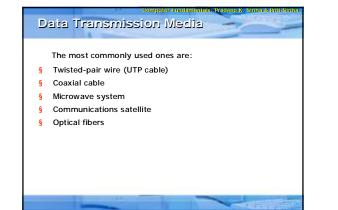
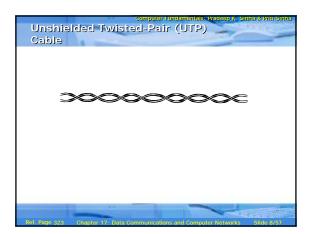
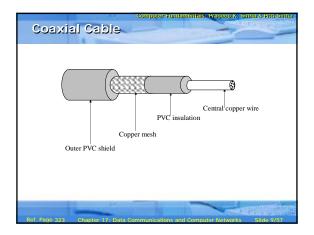

Learning Objectives

In this chapter you will learn about:

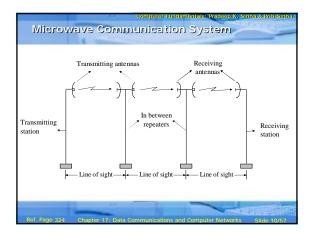
- § Basic elements of a communication system
- § Techniques, channels, and devices used to transmit data between distant locations
- § Types of computer networks
- § Communication protocols and their use in computer networks
- § Internetworking tools and their use in building large computer networks
- § Characteristics and advantages of distributed data processing

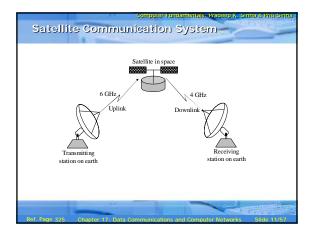


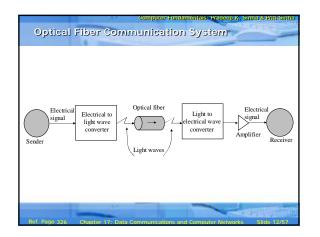


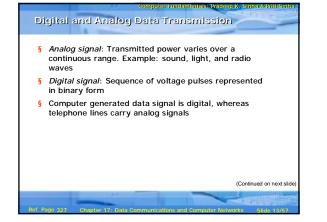

Computer Fundamentality Render 16, Sinna 4 Petel Sinna Data Transmission Speed S Bandwidth: Range of frequencies available for data transmission. It refers to data transmission rate. Higher the bandwidth, the more data it can transmit Baud: Unit of measurement of data transfer rate. Measured in bits per second (bps)

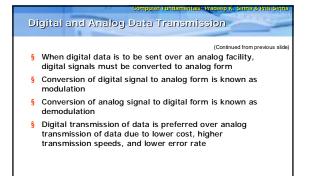
Data Transmission Speed Category

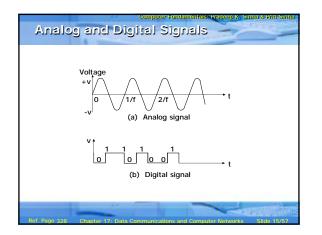

- § Narrowband: Sub-voice grade channels in range from 45 to 300 baud. Mainly used for telegraph lines and low-speed terminals
- § Voiceband: Voice grade channels with speed up to 9600 baud. Mainly used for ordinary telephone voice communication and slow I/O devices
- § Broadband: High speed channels with speed up to 1 million baud or more. Mainly used for high-speed computer-to-computer communication or for simultaneous transmission of data

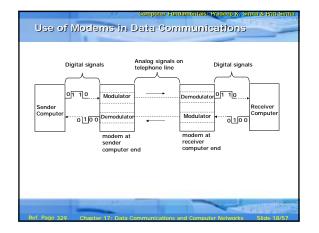










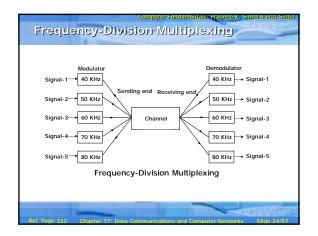


Modulation Techniques Amplitude Modulation (AM): Two binary values (0 and 1) of digital data are represented by two different amplitudes of the carrier signal, keeping frequency and phase constant Frequency Modulation (FM): Two binary values of digital data are represented by two different frequencies, while amplitude and phase are kept constant Phase Modulation (PM): Two binary values of digital data are represented by shift in phase of carrier signal

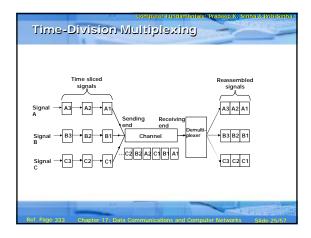
Factors for Modern Selection § Transmission speed § Internal versus external § Facsimile facility

Data Transmission Services § Data transmission service providers are popularly known as common carriers § Various types of services offered by common carriers are: § Dial-up line: Operates in a manner similar to a telephone line

- § Leased line: Special conditioned telephone line that directly and permanently connects two computers
- § Integrated Services Digital Network (ISDN): Telephone system that provides digital (not analog) telephone and data services

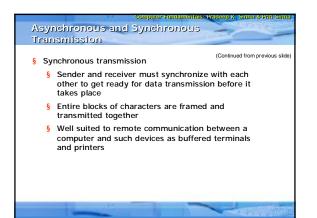

(Continued on next slide)

Computer Fundamentality Readcep & Sinna & Prift Sinna Data Transmission Services (Continued from previous stide **5 Value Added Network (VAN):** Provides value-added data transmission service. Value added over and above the standard services of common carriers may include e-mail, data encryption/decryption, access to commercial databases, and code conversion for communication between computers

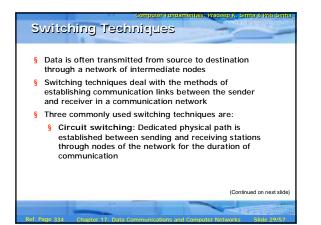

Multiplexing

- § Method of dividing physical channel into many logical channels so that a number of independent signals may be simultaneously transmitted
- § Electronic device that performs multiplexing is known as a *multiplexer*
- § Multiplexing enables a single transmission medium to concurrently transmit data between several transmitters and receivers

Two Basic Methods of Multiplexing Frequency-Division Multiplexing (FDM): Available bandwidth of a physical medium is divided into several smaller, disjoint logical bandwidths. Each component bandwidth is used as a separate communication line Time-Division Multiplexing (TDM): Total time available in a channel is divided among several users, and each user of the channel is allotted a time slice during which he/she may transmit a message

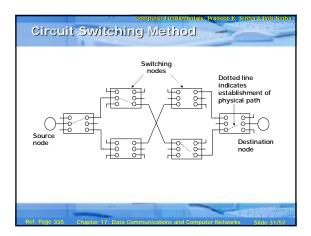


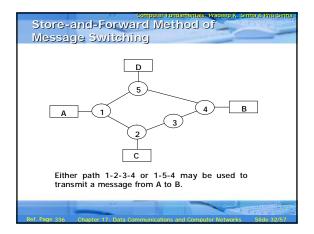
Asynchronous and Synchronous Transmission § Two modes of data transmission on a communication line are asynchronous and synchronous


- § Asynchronous transmission
 - § Sender can send data at any convenient time and the receiver will accept it
 - § Data is transmitted character by character at irregular intervals
 - § Well suited to many keyboard type terminals

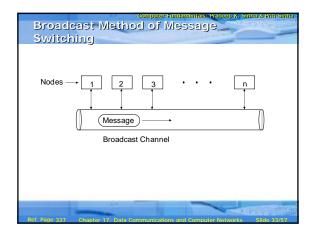
(Continued on next slide)

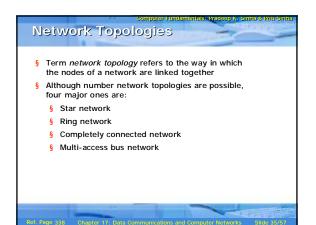
Computer Fundamentals: Pradeep K. Sinha & Priti Sinha
Data Transmission
Irregular time intervals between two characters Character And Stop bits (a) Asynchronous transmission Indefinite time interval between two blocks of data
Echarchar Mining and of block Header containing synchronizing
indication and other information
(b) Synchronous transmission
Ref. Page 334 Chapter 17: Data Communications and Computer Networks Slide 28/57

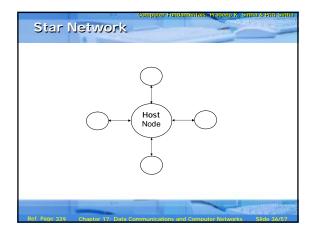


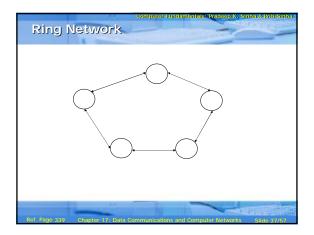

Switching Techniques

(Continued from previous slide)

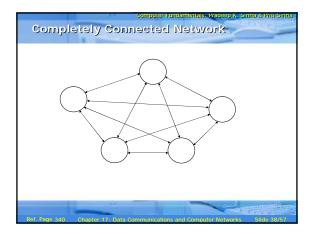

- § Message switching: Sender appends receiver's destination address to the message and it is transmitted from source to destination either by store-and-forward method or broadcast method
- § Packet switching: Message is split up into fixed size packets and each packet is transmitted independently from source to destination node. Either store-andforward or broadcast method is used for transmitting the packets. All the packets of a message are reassembled into original message at the destination node

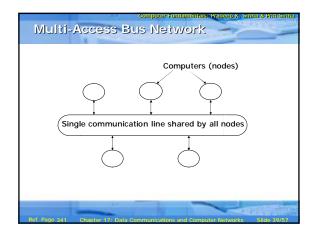


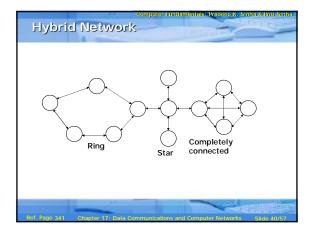




Routing Techniques


- § In a WAN, when multiple paths exist between the source and destination nodes of a packet, any one of the paths may be used to transfer the packet
- Selection of path to be used for transmitting a packet is determined by the routing technique used
- § Two popularly used routing algorithms are:
- Source routing: Source node selects the entire path before sending the packet
- § Hop-by-hop routing: Each node along the path decides only the next node for the path





Network Types § Networks are broadly classified into two types: Local Area Network (LAN) and Wide Area Network (WAN)

- § Local Area Network (LAN) as compared to WAN:
 - § Limited to a small geographic coverage
 - § Has much higher data transmission rate
 - § Experiences fewer data transmission errors
 - § Has lower data communication cost
 - § Typically owned by a single organization
- § Networks that share some of the characteristics of both LANs and WANs are referred to as Metropolitan Area Network (MAN)

Communication Protocols Protocol is a set of formal operating rules, procedures, or conventions that govern a given process Communication protocol describes rules that govern transmission of data over communication networks Roles of communication protocol: Data sequencing Data routing Data to this

- § Data formatting
- § Flow control
- § Error control

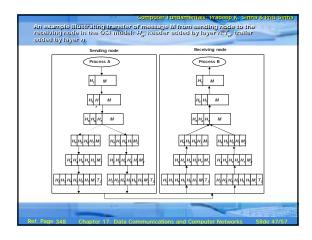
(Continued on next slide)

Communication Protocols

(Continued from previous slide

- § Precedence and order of transmission
- § Connection establishment and termination
- § Data security
- § Log information.
- § Communication protocols are normally split up into a series of modules logically composed of a succession of layers.
- § Terms protocol suite, protocol family, or protocol stack are used to refer to the collection of protocols (of all layers) of a network system

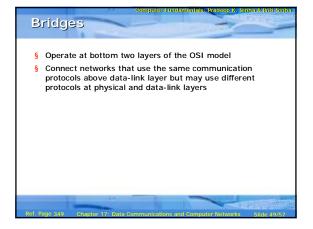
Network Interface Card (NIC)

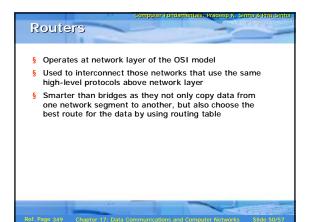

- § Hardware device that allows a computer to be connected to a network, both functionally and physically
- § Printed circuit board installed on to one of the expansion slots of computer
- § Provides a port on the back to which network cable is attached

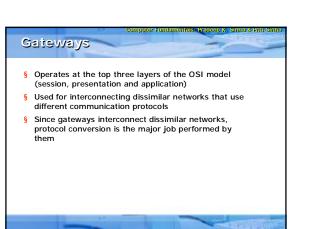
The OSI Model

- § The Open System Interconnection (OSI) model is framework for defining standards for linking heterogeneous computers in a packet switched network
- § Standardized OSI protocol makes it possible for any two heterogeneous computer systems, located anywhere in the world, to easily communicate with each other
- § Separate set of protocols is defined for each layer in its seven-layer architecture. Each layer has an independent function

Computer Fundamentals: Pradeep K. Sinha & Priti S	mha					
Layers, Interfaces, and Protocols						
	-					
In the OSI Model						
Node 1 Node 2						
Process B Process B						
Laver 7 Application protocol Layer 7						
(application)						
Interface						
Layer 6 (presentation)						
Interface I Interface						
Layer 5 (session)						
Interface						
Layer 4 Transport protocol Layer 4						
Interface						
Layer 3 Network protocol						
(network) (network)						
Interface Interface Interface Interface						
(data link) (data link)						
Interface I Interface						
(physical)						
Network						
Ref. Page 346 Chapter 17: Data Communications and Computer Networks Slide 46/5	57					







Internetworking

- § Interconnecting two or more networks to form a single network is called internetworking, and the resulting network is called an internetwork
- § Goal of internetworking is to hide details of different physical networks, so that resulting internetwork functions as a single coordinated unit
- § Tools such as bridges, routers, brouters, and gateways are used for internetworking
- § The Internet is the best example of an internetwork

Wireless Computing Systems

- § Wireless computing system uses wireless communication technologies for interconnecting computer systems
- § Enhances functionality of computing equipment by freeing communication from location constraints of wired computing systems
- § Wireless computing systems are of two types:
 - § Fixed wireless systems: Support little or no mobility of the computing equipment associated with the wireless network
 - § Mobile wireless systems: Support mobility of the computing equipment to access resources associated with the wireless network

Wireless Technologies § 2G and 3G § Wireless LAN

- § WiMAX
- § Wireless Local Loop (WLL)
- § Radio-router
- § Multihop Wireless Network
- § Wireless Application Protocol (WAP)

Distributed Computing Systems

- S Configuration where many independent computer systems are connected, and messages, processing task, programs, data, and other resources are transmitted between cooperating computer systems
- § Such an arrangement enables sharing of many hardware and software resources as well as information among several users who may be sitting far away from each other

Wain Advantages of Distributed Computing Systems

- § Inherently distributed applications
- § Information sharing among distributed users
- § Resource sharing
- § Shorter response times and higher throughput
- § Higher reliability
- § Extensibility and incremental growth
- § Better flexibility in meeting users' needs

§ Metropolitan Area Network (MAN)	§ Protocol suite (Continued from previous slide)
§ Microwave system	§ Repeater
§ Mobile computing	§ Ring network
§ Modem	§ Router
§ Modulation	§ Session layer
§ Multi-access Bus network	§ Simplex
§ Multiplexer	§ Source routing
§ Narrowband	§ Star network
§ Network Interface Card (NIC)	§ Store-and-forward
§ Network layer	§ Synchronous transmission
§ Network topology	§ Time-Division Multiplexing (TDM)
§ Nomadic computing	§ Transport Control Protocol (TCP)
§ Optical fibers	§ Transport layer
§ OSI Model	§ Twisted-pair
§ Packet switching	§ Unshielded twisted-pair (UTP)
§ Phase Modulation (PM)	§ User Datagram Protocol (UDP)
§ Physical layer	§ Value Added Network (VAN)
§ POTS (Plain Old Telephone Service)	§ Voiceband
§ Presentation layer	§ VSAT (Very Small Aperture Terminals)
§ Protocol family	§ Wide Area Network (WAN)
§ Protocol stack	§ Wireless network